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Abstract—The Assembly Line Balancing Problem (ALBP) is
of great relevance for manufacturing companies improving the
line efficiency and productivity and thus maximizing production
profits. Multiple exact, heuristic and meta-heuristic methods have
been applied to solve the ALBP. These optimization methods
consist in producing a feasible line balance, i.e. the partitioning
of assembly tasks among available work stations based on,
among others, the precedence graph. Such a graph describes
the technological and organizational precedence constraints be-
tween tasks. Unfortunately, the assembly precedence relations,
in the automotive and related industries for example, are often
outdated, incomplete or altogether unavailable. This limits the
applicability of the available approaches to real-world assembly
systems. Grounded in an industry use-case, we propose a novel
approach for the assistance in the upfront assignment of assembly
tasks to stations. We recommend station assignments relying on
historical data of prior feasible assembly balances of different
products. We evaluate our approach against real industry data.
On average, our approach is able to provide station assignment
recommendations for 91% of the tasks at 82% precision.

Index Terms—Assembly Line Balancing Problem, task assign-
ment, assembly process, Jaccard similarity, assignment recom-
mendation.

I. INTRODUCTION

The thorough planning and configuration of assembly sys-
tems are of uttermost importance for manufacturing companies
maximizing the production efficiency and profit [1]. The
ALBP is the partitioning of assembly work among stations
with respect to prioritized objectives [2]. These objectives are
cost or profit oriented and aim to minimize the number of
stations and/or maximize the line efficiency [3].

The Assembly Line Balancing Problem (ALBP) has drawn
considerable attention from the academic and industrial com-
munities for decades [2], [3], [4]. The formerly presented solu-
tions, however, are not always feasible in real-world assembly
systems. Boysen et al. draw attention to the gap between
the effort invested in solving the ALBP within the research
community and its applications in industrial settings [5]. Falke-
nauer further specifies the limited number of commercially
available software related to the ALBP in the automotive
and related industries, such as construction vehicles manu-
facturing [6]. They explain this by complex combinations of
industrial requirements which are often addressed individually
in research. Alternatively, applying the ALBP solutions is
often unfeasible because of the lack of input data namely the
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assembly precedence graph. The assembly precedence graph
is a directed acyclic graph describing the feasible order of
execution of assembly work in the presence of restricting
technological and organizational constraints [7]. This data
is often outdated, incomplete or altogether unavailable. The
creation and maintenance of the ever-changing precedence
relations require extensive time and effort [8].

Klindworth et al. state the example of the automotive indus-
try where experts rely on their tacit knowledge of precedence
relations and other constraints to deliver a feasible assembly
line balance [7]. Solving the ALBP includes setting the assem-
bly systems capacity (cycle time, number of stations, number
of workers, etc.), as well as properly assigning the assembly
work to the corresponding stations [1]. The latter can only
be attained through expert knowledge of the line’s assembly
activities and constraints. Experts often assign the assembly
tasks manually based on their tacit knowledge of related
activities that can be processed together in one environment
(i.e., a station). For larger products for example, this results
in having to process a large number of assembly tasks and
identifying a preliminary station assignment. As the next step,
the experts proceed to manually balance the pre-assigned
tasks producing a feasible assembly balance. This step aims
at balancing the work load assigned to stations and workers
while maximizing the line efficiency, minimizing the number
of stations and/or workers, etc.

The manual assignment and balancing is usually an iterative
process to optimize the final balance while taking input from
line leaders, workers, logistics department, etc. These itera-
tions take considerable time, and thus determine how often it
is economical to rebalance a line to better match demand (and
supply of parts). A vital step in speeding up the balancing task,
thus, is to produce a correct and usable preliminary assignment
of assembly tasks to stations as the basis for the first iteration.
This reduces the number of iterations needed. This paper
addresses the problem of obtaining such a preliminary task
assignment.

To this end, we propose an approach assisting in the upfront
assignment of assembly tasks by providing station assignment
recommendations without relying on the precedence relations.
This approach is based on historical data from prior assembly
balances of different products and derives station assignment
information based on calculated similarities among tasks.

Specifically, our contributions in this paper are (i) an algo-
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TABLE I
SIMPLIFIED ASSEMBLY LINE BALANCE EXAMPLE OF AN EXCAVATOR.

‘Workers Tasks

Hydraulics mounting

Stations

Station1 W1 T1.1  Mounting of the hydraulic oil tank
w2 T2 Mounting of the hydraulic pump
T13 Mounting of the hydraulic hoses
Ty 4 Mounting of the hydraulic pedals
Arm contruction
Station2 ~ W3+W4 T4 Mounting of the Boom
T o Mounting of the Arm
Ts.3 Mounting of the Bucket
Cabin construction
Station3 W5 151 Mounting of the seats
T5.2 Mounting of the cabin frame
T5.3 Mounting of the Radio
T3.4 Mounting of the windows
T Tas
st Tar ¥ Tz P Tay B Ty P Taa ond
Tia » Tz > Ty, ( Taa

Fig. 1. Simplified precedence graph of an excavator assembly process.

rithm for calculating structural similarities between assembly
tasks based on the task’s most relevant activities and (ii) an as-
sembly task to station assignment recommendation algorithm
based on the calculated similarities. On average, our approach
is able to provide station assignment recommendations for
91% of the tasks at 82% precision.

The remainder of this paper is organized as follows; We
formally define the problem as well as relevant background
information in Section II. In Section III, we discuss the former
solutions presented in literature. Section IV introduces our
approach for providing assembly work to station assignment
recommendations. A thorough evaluation is then presented in
Section V, before Section VI concludes the paper with an
outlook on future work.

II. PROBLEM DEFINITION AND BACKGROUND

An assembly process P is a set of assembly tasks T;,7 €
{1,..,n} (hereafter referred to as tasks) that are progressively
executed to assemble the final product. Due to technological
or organizational conditions, tasks are restrained with prece-
dence constraints that ought not to be violated (e.g., one
cannot mount an excavator’s bucket before its boom). These
constraints, defined in a directed acyclic precedence graph,
describe the fact that some tasks have to be imperatively
completed before other tasks. Tasks can thus be processed
in parallel or in sequence in accordance with the precedence
graph. Figure 1 illustrates an example of a precedence graph
defined for a simplified assembly process of an excavator
defined in Table I (other details of the excavator assembly
balance from Table I will be presented later in this section).

Each task 7} is characterized by a predetermined task
time ¢;. Task times are often obtained using Predetermined
Motion Time Systems (PMTS). Methods-Time Measurement
(MTM) [9] is currently one of the most used methods in
manufacturing. This method consists in the analysis of each
task into basic human motions such as reach, grasp, move,
etc. A composition of these human motions creates higher-
level building blocks that we refer to as sub-tasks st. Sub-
tasks define recurrent activity patterns that can be reused in
building all assembly tasks for all products of the same or
similar categories. Examples of such sub-tasks include “use
crane to move heavy part for x meters”, “screw in and tighten
x screws with screwdriver or fork wrench”, “mount electric
cable”. These sub-tasks describe basic yet generic assembly
activities that it can build a wide range of assembly tasks. Each
assembly task can thus be defined as T; = {st;;j € {1,..,m}}

An assembly line A is composed of a set of 1 stations
Sk, k € {1,..,1}. Straight and U-shaped are the most com-
monly implemented assembly line layouts. One or multiple
product models can be assembled on the same assembly line.
The station load ¥, is the set of tasks assigned to the station
Sk. The station time is the time required to process all tasks
assigned to the station. In the case of paced assembly lines,
stations are tightly coupled with a common cycle time c. Every
cycle ¢, the whole assembly line, thus all products under
assembly, advances by one station. Each station time must
not exceed the fixed cycle time c. A team of one or more
workers, human or robots, is also assigned to each station
thus responsible for the processing of its assigned tasks. The
necessary tools and parts are available at each station.

ALBP is the partitioning of the assembly work among
stations, optimized towards predetermined objectives [2]. We
define the balance B as one feasible balance for process P on
an assembly line A; B = {Xy;k € {1,..,1}}. Table I defines
an example of a simplified feasible assembly balance for an
excavator. It details the tasks partitioning among stations and
the workers assignment. Other aspects, such as the assembly
parts, available tools, etc. are outside the scope of this paper.

ALBP has been extensively researched for decades. A wide
ranging set of solutions has been proposed as a result. A
well known classification of the problem was introduced by
Baybars in [10]. The simplified version is a single model prob-
lem referred to as the the Simple Assembly Line Balancing
Problem (SALBP). This category is restrained by several as-
sumptions in order to simplify the problem. These assumptions
however are often restricting and do not accurately portray
the assembly lines in the real-world production systems. The
relaxing of one or more of the assumptions results in the more
realistic version denoted the General Assembly Line Balancing
Problem (GALBP).

For the remainder of this paper we make the following
assumptions inspired by the SALBP assumptions.

e Production of one homogeneous product in the presence
of variants.
o Paced assembly line with a fixed common cycle time c.
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o Anassembly task 7%, € {1, ..,n} can not be split among
stations.

o A pre-defined set of sub-tasks is used to build all assem-
bly tasks.

e Data of prior assembly balances of different products
(belonging to the same product category for example)
are available.

III. RELATED WORK

Since the first mathematical formulation of the ALBP by
Salveson [11], several optimization models have been pre-
sented and discussed in literature [2]. In the effort to tighten the
gap between literature and industry, extensions of the original
SALBP were also studied and solved [3], [4]. This includes
different assembly layouts, mixed and multiple model lines,
non-deterministic task times, etc. The existing solutions apply
exact methods [12], [13], [14], heuristic methods [15], [16],
[17] and meta-heuristic methods [18], [19].

The existing approaches produce optimized assembly se-
quences with respect to specific objectives mainly using as
input the precedence graph. However in real-world assembly
systems, the intensive required manual input increasing with
the number of tasks (up to several hundreds or even thousands)
prevents manufacturers from collecting and maintaining prece-
dence relations [20]. The knowledge of the precedence rela-
tions exists implicitly in the heads of experts, who manually
generate feasible plans for the assembly line or segments of
it [8].

To solve this impracticality, some approaches opt for the
automatic or semi-automatic generation of the precedence
relations. Niu et al. propose an approach for the generation
of precedence graph based on a hierarchical relation graph
and the mating relation graph, derived from the CAD model of
the product under assembly [21]. Klindworth et al. present the
Basic Learning Precedence Graph Concept (BLGC) based on
past feasible sequences and expert interviews [7]. An extension
is then introduced in [8] by integrating additional sources of
data and enhanced interview guidelines. These approaches,
although useful for product re-balancing, require a number
of feasible sequences of the same product causing a cold-start
problem. Other sources of data are required (such as CAD)
yet not always available.

We present an approach that, based on historical data of
prior balances of other products, computes similarities between
tasks and concludes the station assignment. Very few assembly
task similarity approaches have been presented in literature. As
an example, we mention Renu and Mocko who investigated
the use of different textual comparison measures to calculate
assembly tasks similarities for knowledge retrieval and reuse
[22].

IV. APPROACH

We propose the following approach to produce a preliminary
assignment of tasks to stations based solely on historical data
and without referring to a precedence graph. The input of the
approach is a previous assembly balance of a different product

designated by the reference balance B hereafter. P = {T};i €
{1,..,n}} identifies the process to be assigned to an assembly
line, while Pg = {T,;p € {1,..,q}} describes the process
corresponding to the reference balance B.

Algorithm 1 outlines the overall approach for task assign-
ment. In short, for each task of P, its station assignment is
inferred from its most similar task in B. A preliminary filtering
of the tasks of B is executed to narrow the search possibilities
(sub-section IV-A). We start by determining weights of the
sub-tasks in P and B (Sub-section IV-B). These weights
measure how “informative” a sub-task is when proceeding to
calculate the similarities between tasks (sub-section IV-C). A
dynamic threshold is also computed depending on the task’s
frequency (Sub-section IV-D). Once the most similar tasks
are determined, a station mapping is applied to ensure the
assignment to the corresponding assembly line station in case
the reference balance assembly line layout differs from the
layout used for the product to be balanced (Sub-section IV-E).

A. Meta-data Based Tasks Filtering

The default approach in determining the most similar task
pairs is to conduct a pairwise comparison, resulting in |P|x|B)|
comparisons; thus, an amount that increases exponentially with
the number of tasks in P and B. Indeed, it is not necessary to
make so many comparisons as, for example, tasks for testing
certain functionality towards the end of the assembly line, do
not need to be compared to tasks related to chassis assembly at
the beginning of the line. Such coarse grained grouping cannot
be determined based on the sub-task information. Hence we
refer to task meta-data that is typically available. Examples
include the information on the segment on the assembly line
(pre-assembly, main assembly, testing, quality assurance, etc.)
or the assembly categories (hydraulics, electronics, chassis,
etc.). The preliminary tasks filtering reduces considerably the
processing time.

Hence, the purpose of preliminary task filtering is to re-
duce the number of pairwise task similarity calculations as
calculations occur only between tasks of the same grouping.
Based on the task’s 7; meta-data, several tasks of the reference
balance B can be discarded as similar candidates and thus no
similarity calculation is needed for the pair. Note that this step
is not mandatory and can be skipped if such meta-data is not
available. In this case, efficient data management structures
for reusing similarity calculation and other heuristics can
reduce the amount of necessary calculation. These, however,
are outside the scope of this paper.

B. Tasks Weighting

The task similarity depends on the structure of each task,
i.e. its constituent sub-tasks. However, not all sub-tasks are of
comparable relevance. We assign to each sub-task a weight
reflecting its relevance to the higher-lever task in the context
of a given process. This weighting scheme is inspired by the
term frequency-inverse document frequency (tf-idf) weighting
factor used primarily in the information retrieval domain. The
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Algorithm 1: Similarity-based Task to Station Assign-
ment

Input: Process P, Balancing B

Output: A station assignment for each 7' € P
1 for T} in P do >P sub-tasks weighting
for st in T; do

| determine weight of st
end

end
for 7 in B do
for st in T; do
| determine weight of st
end

>B sub-tasks weighting

e % N S UM A W N

10 end
11 recommendations = Listtask, station
12 for T; in P do

13 mostSimilarTask = {task:null, similarity:0}

14 for T in B do

15 >Initial Task Filtering
16 if metaDatalnfo(1;) # metaDatalnfo(T);) then
17 | continue; >Proceed with next reference task
18 end

19 >Pairwise Task Similarity
20 if similarity(T;,T;) > mostSimilarTask.sim then
21 mostSimilarTask.task < 77

2 mostSimilarTask.sim < sim(T;,T;)

23 end

24 end

25 >Rare case: return empty recommendation
26 if mostSimilarTask.task == null then

27 recommendations.add(7;, null);

28 continue; >Proceed with next task
29 end

30 >Dynamic threshold to improve precision

31 7 = getThreshold(metaDatalnfo(75))
32 if mostSimTusk.sim > T then

33 S = getStation(mostSimTask.task)

34 >Station Mapping
35 recStation = getStationMapping(S)

36 recommendations.add(l;, recStation);

37 else

38 | recommendations.add(7;, null);

39 end

40 end

41 Return recommendations

basic idea is: the more often a sub-task occurs in the various
tasks, the less useful it is for determining task similarity.

The weight of a sub-task st; of a task T; is calculated as
follows as the product of two metrics.

w(st;, T;) = stf(st;, T;) =it f(st;, P)
Vie {1,...nlvje {1,..m} (1)

The first metric is sub-task frequency stf(st;,T;). It mea-

sures how frequently st; occurs within T3, Eq. 2. It is
calculated as the ratio of the raw count of the sub-task within
the higher-level task f(st;, T;) by m, the total number of sub-
tasks in 7T;.

stf(st;, T;) = 7]0(9;]{ )

Vie{l,.,nlVje{l,..m} ()

The second metric is inverse task frequency it f(st;, P),
Eq. 3. This metric is inversely proportional to the number of
tasks containing the sub-task st;. It measures how frequently
the sub-task is used throughout the process indicating its
relevance. A less frequent sub-task, considered more relevant,
results in a higher value of itf and thus a higher overall
weight. Inversely, ¢t f diminishes the weight of very frequent
sub-tasks.

y )
count(T € P;st; €T)
vie{l,..,m} (3)

C. Task Similarity Calculation

Different methods can be used to measure the degree of
similarities between assembly tasks. Textual similarity based
on the task id or description or similarity of the used assembly
parts are viable options. For this approach, we propose a struc-
tural assembly task similarity based on the tasks’ constituent
sub-tasks. To compute the similarity between two tasks 7; and
T}, we start by representing the two task sets as p-dimensional
vectors V; and V;, where p = |T; U T} |. Several measures such
as Jaccard’s index, Sorensen—Dice coefficient, cosine index,
and overlap coefficient have been used for data sets similarity
calculations. For this approach, we use Jaccard’s weighted
similarity index[23], calculated as follows;

IV V) — Vills + 11Vills = IVi = Villa @

IVills + 11Ville + IVi = Villa

We use the Jaccard’s weighted similarity index with the sub-
tasks’ weights (as introduced in Subsection IV-B above). The
reason for using weights is that very common sub-tasks should
not result in a high similarity measure. Hence, for a pair of
tasks, one sharing only three common sub-tasks, and another
pair sharing only three rare sub-tasks, the former pair will
yield a lower similarity score compared to the latter pair.

Specifically the similarity score is in range 0 to 1: 0 <
J(V;,V;) < 1. A value of 1 indicates a perfect similarity
between the two tasks (i.e., both tasks consist exactly of
the same sub-tasks) while a value of O indicates absolute
dissimilarity (i.e., both tasks share no sub-tasks).

D. Dynamic threshold adjustment

By default, a task pair with a similarity value below the
similarity constraint is disregarded. The setting of a suitable
similarity threshold is not a trivial process requiring usually
expert input. To simplify this process, we propose a dynamic
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threshold adjustment based on the task’s meta-data. The idea
is similar to obtaining the weight for a sub-task. For tasks
belonging to larger grouping, a multitude of candidates is
considered and thus a higher threshold is required to assure
the selection of the most similar tasks. For groupings with a
fewer number of tasks, already a low similarity score will be
sufficient to obtain a useful station recommendation.

To this end, we define GG as the group of tasks sharing the
same meta-data (pre-assembly group, testing group, hydraulics
mounting group, etc.). Then we assign weights to each group,
Eq. 6. w(G, P) is based on the inverse group metric measure
igf(G, P), Eq. 5. The inverse group metric works similarly
to the inverse task frequency (Eq. 3). The larger the group
(compared to the overall task count), the closer to zero igf
becomes. Eq. 6 scales igf into the interval O to 1. Thus
w(G, P) is 0 for large groups, which require no additional
lowering of the similarity threshold, and 1 for smaller groups,
where a lower similarity threshold is acceptable to obtain
higher coverage at similar precision. As the evaluation shows
(SectionV), this achieves good coverage, without trading off
precision.

Finally, the dynamic threshold 7(G) is derived from
w(G, P) and the base threshold 7, Eq. 7. The base threshold
just needs to be roughly set in the interval O to 1, and is then
automatically reduced with the group weight in the range of
0 to 0.5. Hence, those tasks that reside in small groups are
subjected to a much smaller (i.e., up to 0.5 smaller) similarity
threshold.

igf(G,P) = log Q(ﬁ) 5)
w(G, P) = ma:c(minl(ggf, 10),0) ©
TG) =7 — @ 0

E. Task Assignment Recommendation

Once the similar tasks are filtered based on the dynamic
threshold, for each task in P the tasks with the highest
similarity value in B are kept. Once the most similar tasks are
identified, we can extract its assignee stations. If the process
P and the reference balance B are balanced on the same
assembly line, we recommend the same station. When the
assembly line layout is not the same (e.g., additional stations,
or fewer station available), a station mapping is necessary. We
suggest the following heuristic for a linear assembly layout.
Take the identified station’s preceding station in B and check
if it matches a station in P, if so, assign to the successor station
in P. If not, take the identified station’s successor station in
B and check if it matches a station in P, if so assign to the
predecessor station in P. In our prototype and evaluation, we
limited such checking to on station prior or later (and gave no
recommendation is case of no station match). This approach,
however, can be easily extended to consider stations further
away as well, or apply it to a network of stations and then
consider stations in a particular hop distance.

V. EVALUATION

A. Evaluation Data

We evaluate our approach based on real assembly data
provided by our industry partner Wacker Neuson, a leading
manufacturer of compact construction machines. The evalua-
tion data is composed of a total of 16 assembly balances for
4 different excavator models (Bg to By5). Assembly balances
covering 3 of these models (By to Bj;) belong to a similar
excavator family whilst the remaining balances (B, to Bis)
describe the balancing of a model judged different than the
others by domain experts (different frame design, smaller size,
etc.). These balances were iteratively optimized by balancing
experts at Wacker Neuson and have been deployed on the
assembly line. For each model, 4 different assembly balances
are available for distinct cycle times. Each assembly balance
describes the tasks to station assignments, the number of work-
ers needed and the workers assignments for the corresponding
cycle time. For assembly balances of the same model, minor
variances in the assembly process also occur (number of
tasks, task renaming, tasks added etc.). Note that these minor
variances are not due to different configurations of the same
model since all processes describe the assembly of the product
in all its possible variants (i.e., the 150% process). These minor
differences are rather due to continuous small improvements.

The 16 processes corresponding to the assembly balances
cover all possible product variants and contain a total number
of tasks varying between 224 and 701. We eliminate redundant
tasks describing supplementary assembly activities such as
order reading, station booking, product transport, etc. These
tasks are usually repeated in all stations and thus no station
assignment recommendation is necessary. A total of 355 sub-
tasks are used as the building blocks of all tasks of all products
including the 4 excavator models included in this evaluation
data.

The assembly balances describe then the assignment of
these processes to different assembly lines. The assembly line
are composed of stations of a total number varying between 11
and 22. Each station hosts an assembly worker team containing
1 to 7 workers responsible for the performing of its assigned
tasks.

From each balance, we extract the task to station assign-
ment data that will serve as our ground-truth data. We then
proceed to apply our approach to generate station assignment
recommendations for the corresponding process. As a first
step, we focus on the balancing of assembly process using a
reference balance of a similar model. We apply our approach
on processes Fp to P;; using a reference balance of the
two remaining product balances (8 in total). For processes
describing the first model for example, Py to P35, balances
B, to Bj; are used as reference balances for the station
assignment recommendation approach. Note that for a given
process, we never use the assembly balances (of different cycle
times) of the same model as we aim to evaluate the ability to
balance a new model based on similar models.
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As a second step, we also evaluate our approach relying only
on assembly balances of a dissimilar product. The purpose is
to demonstrate the importance of choosing a sensible reference
product, a typically straight forward task for a user familiar
with the product portfolio. We evaluate the station assignment
recommendations provided for the balancing of processes
to Pp; using Bjo to Bjs as reference balances and vice versa
(assigning processes P2 to Pj5 using By to By; as reference
balances)

We evaluate our station assignment recommendation ap-
proach with a base threshold 7, of 0. This achieves that we
recommend the tasks with the highest similarity independently
of the threshold for the purpose of this evaluation. In an actual
tool, the end user would select the desired trade-off between
coverage and precision. In any case, the similarity measure
and the dynamic threshold together provide insight into the
recommendation to enable the user to judge the trustworthiness
of a recommended assignment. To this end, we also evaluate
our proposed dynamic threshold approach with comparison to
standard static threshold.

The results of our evaluation and its interpretation is dis-
cussed in the following section.

B. Results and Discussion

To evaluate our task assignment recommendation approach,
we calculate two metrics namely the coverage and precision.
Figure 2 displays the calculated results for each of the 12
assembly processes (P to P;;) showing the distribution of
the two metrics (varying between O and 1) depending on the
reference balance used.

The coverage, measuring the completeness of our approach,
is calculated as the ratio of tasks our approach is able to
provide a station assignment recommendation for, to the total
number of tasks. The coverage values, as shown by the blue
boxes in Figure 2, are relatively high and vary between 0.85
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and 0.94. The average coverage values for each process are
between 0.9 and 0.93. This means that on average, for the
12 processes of the evaluation data, our approach is able to
provide station recommendations for 90% to 93% of all tasks.

We also measure precision of our approach calculated as
the ratio of correct assignment recommendations to the total
of provided recommendations. The calculated precision values
vary between 0.74 and 0.91 for all the 12 processes of the
evaluation data whereas the average precision varies between
0.8 and 0.84. This means that, on average, 80% to 84%
of the station assignment recommendations provided by our
approach are indeed correct. Note, however, that these results
are obtained when using no similarity threshold. Hence, by
selecting a suitable reference balancing and by increasing the
threshold, one can obtain highly precise recommendations.

We also evaluate our approach in the absence of reference
balances of similar products. First we apply our approach
to assist in the upfront assignments of processes P, through
P11, using as reference balances Bis to Bys. The results are
displayed in Figure 3. The coverage values vary between 0.33
and 0.67 while the precision values vary between 0.22 and
0.5. Figure 4 displays the coverage and precision scores for
the station assignment recommendation approach applied for
processes Ppo through Pps, using as reference balances By
to By1. The coverage varies between 0.67 and 0.83 while the
precision values are between 0.2 and 0.8.

The results displayed in Figure 2 are calculated without
limiting the approach with a similarity threshold. This demon-
strates the quality of our approach, even without using a
threshold and thus maximizing the amount of recommenda-
tions, hence lowering the remaining effort for the user of
assigning the tasks without a recommendation. The (dynamic)
threshold still has important value for the user, as he/she may
set the threshold value to adjust the set of recommendations,
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. P o 04
derived from lower calculated similarities. ©
o
To this end, we evaluate our dynamic threshold approach ES
compared to a standard static threshold. Figure 5 and Figure 6 — Static Threshold
. . .. . dynamic Threshold
compare the obtained coverage, respectively precision, at dif- 00 L+ — . . . .
ferent threshold values averaged over the 12 similar products. 00 02 o4 oe o8
Threshold T

One notices that while the precision is slightly lower for the
dynamic threshold, coverage is much higher (hence lowering
the work for the user without introducing many incorrect
recommendations). The figures also show that a tuning of the
threshold below 0.4 has virtually no effect on coverage, and
only thresholds above 0.6 tend to increase precision. Note, as
explained above, that choosing a suitable candidate balance for
comparison will increase the precision numbers even more.

Fig. 6. Comparison of precision at different threshold levels.

Automatically determining a heuristic for determining the
near-optimal candidate reference balance, however, is outside
the scope of this paper.
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VI. CONCLUSION

This paper presented a novel approach for the assistance
in the phase of upfront task to station assignment in the
context of assembly line balancing. Current solutions to the
ALBP rely mainly on the precedence graph to optimize an
assembly balance with respect to predefined objectives. In
reality however, the precedence relations are often outdated,
incomplete, or altogether unavailable. Alternatively, experts
rely on their tacit knowledge to produce a feasible assembly
balance assigning tasks to stations and at a later stage bal-
ancing the load to meet the predefined objectives with respect
to the implicitly known precedence relations. Our approach
provides assistance to the balancing experts in the phase of the
upfront task to station assignment thereby reducing the number
of iterations and hence time to obtain a final balance. Evaluated
against real industry data, our approach is able to provide
station assignment recommendations for 91% of the total of
tasks with a precision of 82%. We also presented a dynamic
threshold approach’s that improves the approach coverage as
compared to standard static threshold. Future work includes
the investigation of combining multiple reference balances
while providing a heuristic suggesting to the user the most
suitable candidate to use as a reference balance to yield the
best results. We are preparing a user study with balancing
experts from industry to determine the usability and usefulness
of a prototype implementing our approach.
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